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Abstract. We investigate the problem of minimizing a nonconvex function with respect to convex
constraints, and we study different techniques to compute a lower bound on the optimal value: The
method of using convex envelope functions on one hand, and the method of exploiting nonconvex
duality on the other hand. We investigate which technique gives the better bound and develop condi-
tions under which the dual bound is strictly better than the convex envelope bound. As a byproduct,
we derive some interesting results on nonconvex duality.
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1. Introduction

In this paper, we consider the global optimization problem of minimizing a non-
convex function subject to convex constraints:

(P )

min f (x)
s.t. hi(x) � 0, i = 1, . . . , m,
x ∈ X,

where f : X → R is a lower semicontinuous function, hi : X → R (i =
1, . . . , m) are convex functions, and X ⊂ R

m is a convex compact set. Our aim is
to study different methods to obtain lower bounds for the optimal value of (P ).

The first technique which has been used since many years is to replace the
objective function with some easier (i.e., convex or linear) subfunctional and solve
the resulting problem. Obviously, the quality of a bound obtained by this means
depends on the quality of the underestimating function. The best possible result is
achieved when the so called convex envelope function is used.

DEFINITION 1. Let X ⊂ R
n be convex and compact, and let f : X → R be

lower semicontinuous on X. A function ϕf : X → R is called the convex envelope
of f on X if it satisfies

(a) ϕf (x) is convex on X,
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(b) ϕf (x) � f (x) for all x ∈ X,

(c) there is no function ψ : X → R satisfying (a), (b) and ϕf (x̄) < ψ(x̄) for
some point x̄ ∈ X.

A detailed discussion of convex envelopes, their properties and their use for com-
puting lower bounds can be found in Horst and Tuy (1996).

To calculate a lower bound using the convex envelope, we must solve the fol-
lowing convexified version of (P ):

(P̄ )

min ϕf (x)
s.t. hi(x) � 0, i = 1, . . . , m,
x ∈ X.

The second possibility to obtain a bound is to use nonconvex duality, see Dür
(2001), Dür and Horst (1997), Nowak (2000), and Thoai (2001). Recall that the
Lagrange–dual problem of (P ) is

(D) sup
λ∈R

m+
inf
x∈X

{
f (x)+

m∑
i=1

λihi(x)

}
.

Using the notation min(P ) and sup(D) to denote the optimal values of (P ) and
(D), respectively, the weak duality theorem tells us that always

sup(D) � min(P ),

and therefore the dual optimal value always gives a lower bound for the primal one.
Thus equipped with two possible bounding techniques, the question arises which

of the two is more powerful. Comparing (D) with the dual problem (D̄) of (P̄ ),

(D̄) sup
λ∈R

m+
inf
x∈X

{
ϕf (x)+

m∑
i=1

λihi(x)

}
,

and assuming strong duality for the pair of convex problems (P̄ ) and (D̄), it is easy
to see that

sup(D) � sup(D̄) = min(P̄ ). (1)

So the dual bound is always at least as good as the convex envelope bound. Falk
(1969) showed that in the case of linear constraints the two bounds sup(D) and
min(P̄ ) coincide, see also Dür and Horst (1997). But little seems to be known for
the nonlinear case.

The following example raises the expectation that in some cases the dual bound
may be strictly better than the convex envelope bound.
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EXAMPLE 2. Consider the one dimensional problem

min
x∈[−2,3]{−x

2 : x2 − x − 2 � 0}.

The optimal value is min(P ) = −4, attained at x = 2. The convexified problem
(P̄ ) takes the form

min
x∈[−2,3]

{−x − 6 : x2 − x − 2 � 0}.

Its optimal value is min(P̄ ) = −8, also attained at x = 2. The dual (D) of (P ) is

sup
λ∈R+

min
x∈[−2,3]

{(λ− 1)x2 − λx − 2λ},

which takes the optimal value sup(D) = −4.2 at λ = 6/5 and x = 3. The poor
lower bound provided by (P̄ ) is therefore improved considerably.

In the remainder of the paper we develop conditions which guarantee that the dual
bound is strictly better than the convex envelope bound.

2. Some results on nonconvex duality

It is well known that in convex programming, Slater’s constraint qualification en-
sures strong duality for (P ) and (D), see, e.g., Geoffrion (1971). Since in non-
convex programming this condition turns out to be very useful as well, recall that
problem (P ) is said to fulfill Slater’s condition if there exists a point x̂ ∈ X such
that hi(x̂) < 0 for all i = 1, . . . , m.

In the sequel, we will use the notation

S := {x̂ ∈ X : hi(x̂) < 0 for all i = 1, . . . , m}
to denote the set of all Slater points,

h̄(x) := max
i=1,... ,m

hi(x)

to denote the pointwise maximum of the constraint functions,

L(x, λ) := f (x)+
m∑
i=1

λihi(x)

to denote the Lagrangean function of (P ), and

�(λ) := min
x∈X L(x, λ)

to denote the dual objective function.
The following result shows that the supremum of the dual problem is attained

at some finite point, provided that S �= ∅.
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THEOREM 3. Assume the functions f and hi (i = 1, . . . , m) in (P ) are lower
semicontinuous and the set X is compact. Assume further Slater’s condition to be
fulfilled for (P). Then

sup(D) = max(D),

and the maximum of the dual objective function �(λ) is attained at some λ̄ ∈ R
m+

with

‖λ̄‖1 � inf
x̂∈S

minx∈X f (x)− f (x̂)

h̄(x̂)
.

Proof. For any x̂ ∈ S and λ ∈ R
m+, we have

�(λ) = min
x∈X

{
f (x)+

m∑
i=1

λihi(x)

}

�f (x̂)+
m∑
i=1

λih̄(x̂)

=f (x̂)+ h̄(x̂)

m∑
i=1

λi

=f (x̂)+ h̄(x̂)‖λ‖1.

Now define a number ρ(x̂), which is easily seen to be nonnegative (note that
h̄(x̂) < 0):

ρ(x̂) := sup(D)− f (x̂)

h̄(x̂)
.

Then for every λ ∈ R
m+ fulfilling ‖λ‖1 > ρ(x̂), we get a dual objective value which

is strictly smaller than the optimal one:

�(λ) �f (x̂)+ h̄(x̂)‖λ‖1

< f (x̂)+ h̄(x̂)ρ(x̂)

= sup(D).

As� is concave and hence continuous, it follows that

sup(D) = sup
{
�(λ) : λ ∈ R

m
+, ‖λ‖1 � ρ(x̂)

}
= max

{
�(λ) : λ ∈ R

m
+, ‖λ‖1 � ρ(x̂)

}
= �(λ̄).
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Finally, using

sup(D) = sup
λ∈R

m+
�(λ) � �(0) = min

x∈X f (x),

we obtain

ρ(x̂) = sup(D)− f (x̂)

h̄(x̂)
� minx∈X f (x)− f (x̂)

h̄(x̂)
.

Obviously, ‖λ̄‖1 � ρ(x̂) for any Slater point x̂ ∈ S. Hence we get the desired
upper bound for ‖λ̄‖1:

‖λ̄‖1 � inf
x̂∈S

minx∈X f (x)− f (x̂)

h̄(x̂)
.

�

This result seems interesting in its own right, but it may also prove useful in a
numerical context: Note that any Slater point x̂ gives the a priori bound

‖λ̄‖1 � minx∈X f (x)− f (x̂)

h̄(x̂)
,

which may be helpful when solving dual problems with bundle–type methods. Of
course, finding a Slater point is a difficult task in general, but may be easy when
the constraints are simple, e.g. box constraints. This reasoning also applies to the
so called standard quadratic problem of maximizing an indefinite quadratic form
on the standard simplex, see Bomze (1998).

3. When are dual bounds better?

In this section we return to the question which of the bounds min(P̄ ) and sup(D)
is better. Theorem 4 states under which assumptions on objective and constraint
functions the dual bound beats the convex envelope bound.

But first observe that it may happen that min(P ) = min(P̄ ). In this case, it
follows from (1) and weak duality that

sup(D) = min(P̄ ) = min(P ),

in other words, the duality gap is zero and both bounds are equal. For this reason,
the mentioned case is excluded in the theorem.

THEOREM 4. In problem (P), let f : R
n → R be strictly concave, let hi(x) :

R
n → R (i = 1, . . . , m) be strictly convex and continuously differentiable, let

X ⊂ R
n be convex and compact. Assume that Slater’s condition is fulfilled for (P),
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and that min(P ) > min(P̄ ). Assume further that the convex envelope ϕf of f on
X is not constant on any interval contained in X. Then the dual bound is strictly
better than the convex envelope bound, i.e.

sup(D) > min(P̄ ).

Proof. Let x̄ be a minimizer of problem (P̄ ), and denote by I (x̄) the set of indices
of the constraints which are active at x̄, i.e.

I (x̄) = {i ∈ {1, . . . , m} : hi(x̄) = 0}.
It follows from the assumption min(P ) > min(P̄ ) that there exists a solution x̄
with I (x̄) �= ∅: If I (x̄) = ∅ for all solutions x̄, then all minimizers of (P̄ ) would
fulfill Slater’s condition. As ϕf is convex, all those minimizers would also solve
minx∈X ϕf (x). Since

arg min
x∈X

ϕf (x) ⊃ arg min
x∈X

f (x), (2)

all minimizers of minx∈X f (x) would also fulfill Slater’s condition and would
therefore minimize (P ). It would follow that min(P ) = min(P̄ ).

So choose an x̄ with I (x̄) �= ∅ and define a partly linearized version (P̃ ) of (P̄ )
as follows:

(P̃ )

min ϕf (x)
s.t. 〈x − x̄,∇hi(x̄)〉 � 0 i ∈ I (x̄),

hi(x) � 0 i �∈ I (x̄),
x ∈ X.

From Theorem 5 in the appendix we get min(P̄ ) = min(P̃ ), from strong duality
(problem (P̃ ) also fulfills Slater’s qualification) we get min(P̃ ) = sup(D̃). What
remains to show is that sup(D̃) < sup(D).

For abbreviation, let �(x̄) denote the set of all λ ∈ R
n+ which fulfill λi �= 0

for at least one index i ∈ I (x̄). The Lagrangean L̃(x, λ) of (P̃ ) then fulfills for
λ ∈ �(x̄) and x �= x̄:

L̃(x, λ) =ϕf (x)+
∑
i∈I (x̄)

λi〈x − x̄,∇hi(x̄)〉 +
∑
i �∈I (x̄)

λihi(x)

� f (x)+
∑
i∈I (x̄)

λi〈x − x̄,∇hi(x̄)〉 +
∑
i �∈I (x̄)

λihi(x)

<f (x)+
∑
i∈I (x̄)

λihi(x)+
∑
i �∈I (x̄)

λihi(x) (3)

=L(x, λ).
Inequality (3) holds because for x �= x̄ we have hi(x) > 〈x − x̄,∇hi(x̄)〉, as all hi
are strictly convex.
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Since ϕf (x̄) < f (x̄) (recall that min(P̄ ) < min(P ) by assumption), we obvi-
ously have L̃(x̄, λ) < L(x̄, λ) for every λ ∈ R

m+, and hence

L̃(x, λ) < L(x, λ) ∀ x ∈ X, ∀λ ∈ �(x̄).
Therefore, we get for the dual objective function �̃(λ) of (P̃ )

�̃(λ) = min
x∈X L̃(x, λ) < min

x∈X L(x, λ) = �(λ) ∀λ ∈ �(x̄).

Next we show that max
λ∈R

m+
�̃(λ) is attained at some λ̃ ∈ �(x̄):

Let λ̃ denote a solution of (D̃), i.e., sup(D̃) = �̃(λ̃), and recall that x̄ is the
optimal solution of (P̃ ). Since (P̃ ) is a convex problem, the optimal primal dual
pair (x̄, λ̃) fulfills the complementary slackness condition (see Geoffrion (1971))∑

i∈I (x̄)
λ̃i〈x̄ − x̄,∇hi(x̄)〉 +

∑
i �∈I (x̄)

λ̃ihi(x̄) = 0.

It follows that λ̃i = 0 for all i �∈ I (x̄).
But from the assumptions of the theorem it follows that λ̃ �= 0: Assume that

λ̃ = 0. Then, since (x̄, λ̃) is a saddle point of L̃(x, λ), it follows that L̃(x̄, 0) �
L̃(x, 0) for all x ∈ X, in other words, ϕf (x̄) � ϕf (x) for all x ∈ X, and therefore

ϕf (x̄) = min
x∈X ϕf (x).

As minx∈X ϕf (x) = minx∈X f (x), we have ϕf (x̄) = minx∈X f (x). Since f is a
concave function, the minimum of f over X is attained at some extremal point of
X. Therefore, either x̄ is an extreme point. Then ϕf (x̄) = f (x̄) and x̄ would solve
both (P̄ ) and (P ), a contradiction.

Or there exist k � n+1 extremal points v1, . . . , vk ofX, such that x̄ is a convex
combination of these extremal points and f (vj ) = ϕf (x̄). But then ϕf would be
constant on the convex hull of {v1, . . . , vk}, which contradicts the assumptions as
well.

Therefore, we conclude that λ̃ ∈ �(x̄).
To sum up, let ρ̄ denote the maximum of the ‖λ‖1–bounds obtained via The-

orem 3 for problems (P ) and (P̃ ), respectively, and get

sup(D̃) = max
{
�̃(λ) : λ ∈ R

m
+, ‖λ‖1 � ρ̄, λ ∈ �(x̄)

}
< max

{
�(λ) : λ ∈ R

m
+, ‖λ‖1 � ρ̄, λ ∈ �(x̄)}

� max
{
�(λ) : λ ∈ R

m
+, ‖λ‖1 � ρ̄

}
= sup(D).

This completes the proof. �
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In Theorem 4, instead of requiring that ϕf is not constant on any interval con-
tained in X, it is also possible to impose any other assumption which guarantees
that there exists a dual optimal solution λ̃ �= 0, e.g., the assumption that ϕf (x̄) �=
minx∈X ϕf (x).

Theorem 4 may be generalized to the setting of nondifferentiable strictly convex
constraint functions. The gradients ∇hi(x̄)must then be replaced with subgradients
of the functions hi at the point x̄ and the proof becomes more technical.

The Theorem tells us that, in the special setting described there, dual bounds
should be preferred to convex envelope bounds. It would, of course, be nice to
have a measure of the difference of the two bounds, in order to know how much
can be gained. Maybe such an estimate is possible for special instances, e.g. for
concave quadratic functions. If this difference turns out to be very high (as it was
in Example 2) this could be numerically interesting, because it must be admitted
that in many cases the dual bound is more difficult to compute than the convex
envelope bound or some other bound using subfunctionals of f . However, this
quantification of the bound improvement is left to future research.

Appendix

The following technical result is used in the proof of Theorem 4. In can be gen-
eralized to the case of nondifferentiable constraint functions in the same way as
pointed out above by substituting gradients with subgradients.

THEOREM 5. Let ϕ : R
n → R be convex, let hi(x) : R

n → R (i = 1, . . . , m) be
strictly convex and continuously differentiable, letX ⊂ R

n be convex and compact.
Let x̄ ∈ R

n be a solution to the problem

min{ϕ(x) : x ∈ X,hi(x) � 0 (i = 1, . . . , m)} (4)

and assume Slater’s condition holds for this problem. Denote by I (x̄) ⊆ {1, . . . , m}
the set of indices of the constraints active at x̄. Then x̄ is also a solution to the
problem

min{ϕ(x) : x ∈ X, 〈x − x̄,∇hi(x̄)〉 � 0 for i ∈ I (x̄),
hi(x) � 0 for i �∈ I (x̄)}. (5)

Proof. Let x̃ denote the minimizer of problem (5). Clearly, the feasible set of
problem (4) is contained in that of problem (5), hence

ϕ(x̄) � ϕ(x̃).

Now assume that ϕ(x̄) > ϕ(x̃). Since x̄ is optimal for problem (4), there does not
exist a feasible descent direction of ϕ at x̄, i.e. there does not exist a direction d
with

〈d,∇hi(x̄)〉 < 0 and ϕ′
d(x̄) < 0, (6)
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where ϕ′
d denotes the directional derivative of ϕ in direction d.

Because of the strict convexity of all constraint functions and because of Slater’s
condition, we can assume that there exists a point x̌ feasible for (5) such that

〈x̌ − x̄,∇hi(x̄)〉 < 0 for all i ∈ I (x̄),
and ϕ(x̌) < ϕ(x̄). But then d := x̌ − x̄ is a feasible descent direction of ϕ at x̄,
since it fulfills conditions (6). This contradicts the optimality assumption on x̄. �
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